Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 286, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627660

RESUMO

Fruit length is a crucial agronomic trait of snake gourd (Trichosanthes anguina L); however, genes associated with fruit length have not been characterised. In this study, F2 snake gourd populations were generated by crossing the inbred lines, S1 and S2 (fruit lengths: 110 and 20 cm, respectively). Subsequently, bulk segregant analysis, sequencing, and fine-mapping were performed on the F2 population to identify target genes. Our findings suggest that the fruit length of snake gourd is regulated by a major-effect regulatory gene. Mining of genes regulating fruit length in snake gourd to provide a basis for subsequent selection and breeding of new varieties. Genotype-phenotype association analysis was performed on the segregating F2 population comprising 6,000 plants; the results indicate that the target gene is located on Chr4 (61,846,126-61,865,087 bp, 18.9-kb interval), which only carries the annotated candidate gene, Tan0010544 (designated TFL). TFL belongs to the MADS-box family, one of the largest transcription factor families. Sequence analysis revealed a non-synonymous mutation of base C to G at position 202 in the coding sequence of TFL, resulting in the substitution of amino acid Gln to Glu at position 68 in the protein sequence. Subsequently, an InDel marker was developed to aid the marker-assisted selection of TFL. The TFL in the expression parents within the same period was analysed using quantitative real-time PCR; the TFL expression was significantly higher in short fruits than long fruits. Therefore, TFL can be a candidate gene for determining the fruit length in snake gourd. Collectively, these findings improve our understanding of the genetic components associated with fruit length in snake gourds, which could aid the development of enhanced breeding strategies for plant species.


Assuntos
Trichosanthes , Trichosanthes/genética , Frutas/genética , Melhoramento Vegetal , Fenótipo , Genes de Plantas/genética
2.
Antioxidants (Basel) ; 11(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36290722

RESUMO

Hydrogen gas (H2) is a unique molecular messenger, which is known to be involved in diverse physiological processes in plants, from seed germination to seedling growth to regulation of environmental stresses. In this review, we focus on the role of H2 in plant responses to abiotic stresses, such as temperature, osmotic stress, light, paraquat (PQ)-induced oxidative stresses, and metal stresses. In general, H2 can alleviate environmental stresses by improving the antioxidant defense system, photosynthetic capacity, re-establishing ion homeostasis and glutathione homeostasis, maintaining nutrient element homeostasis, mediating glucose metabolism and flavonoid pathways, regulating heme oxygenase-1 (HO-1) signaling, and interaction between H2 and nitric oxide (NO), carbonic oxide (CO), or plant hormones. In addition, some genes modulated by H2 under abiotic stresses are also discussed. Detailed evidence of molecular mechanisms for H2-mediated particular pathways under abiotic stress, however, is scarce. Further studies regarding the regulatory roles of H2 in modulating abiotic stresses research should focus on the molecular details of the particular pathways that are activated in plants. More research work will improve knowledge concerning possible applications of hydrogen-rich water (HRW) to respond to abiotic stresses with the aim of enhancing crop quality and economic value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...